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ABSTRACT Inelastic neutron scattering spectra of myoglobin hydrated to 0.33 g water (D20)/g protein have been measured
in the low frequency range (1-150 cm-1) at various temperatures between 100 and 350 K. The spectra at low temperatures
show a well-resolved maximum in the incoherent dynamic structure factor Sinc(q, w) at ~-25 cm-1 and no elastic broadening.
This maximum becomes gradually less distinct above 180 K due to the increasing amplitude of quasielastic scattering which
extends out to 30 cm-1. The vibrational frequency distribution derived independently at 100 and 180 K are very similar,
suggesting harmonic behavior at these temperatures. This result has been used to separate the vibrational motion from the
quasielastic motion at temperatures above 180 K. The form of the density of states of myoglobin is discussed in relation to
that of other amorphous systems, to theoretical calculations of low frequency modes in proteins, and to previous
observations by electron-spin relaxation of fractal-like spectral properties of proteins. The onset of quasielastic scattering
above 180 K is indicative of a dynamic transition of the system and correlates with an anomalous increase in the atomic
mean-squared displacements observed by M6ssbauer spectroscopy (Parak, F., E. W. Knapp, and D. Kucheida. 1982. J.
Mol. Biol. 161:177-194.) and inelastic neutron scattering (Doster, W., S. Cusack, and W. Petry. 1989. Nature [Londl.
337:754-756.) Similar behavior is observed for a hydrated powder of lysozyme suggesting that the low frequency dynamics
of globular proteins have common features.

1. INTRODUCTION

Mossbauer spectroscopy (1, 2) has demonstrated the
existence of a striking transition in the dynamical behav-
ior of myoglobin at -200 K characterized by a marked
increase with temperature of the mean squared displace-
ment of the heme iron which is correlated with the onset
of motions on the time scale of l0-7-10-9 s. These
observations have been interpreted on the basis of a model
of protein dynamics originally proposed to explain the
temperature dependence of ligand binding in myoglobin
(3, 4). It is supposed that a folded protein can exist in
multiple conformational substates corresponding to multi-
ple minima in the potential energy surface of the protein.
At physiological temperatures there can be rapid transi-
tions between these substates whereas at low tempera-
tures (typically below 200 K) there is the possibility that
individual molecules become 'frozen' into different sub-
states which may have different functional properties
(e.g., different ligand rebinding rates). Further evidence
for this picture has come from the x-ray structure analysis
of myoglobin down to 80 K (5) and an analysis of a

molecular dynamics simulation of myoglobin (6). It has
also been shown that the transition in the mobility of
myoglobin above 200 K correlates with a glass-like transi-
tion in the hydration water (7).

In this and a related paper (8) we demonstrate that the
dynamic transition in myoglobin can also be observed

using inelastic neutron scattering. Using this technique
(9-12) motions faster than 10-10 s can be resolved and the
markers of protein motion are the hydrogen atoms (due to
the anomalously large incoherent neutron scattering cross-

section of the 'H nucleus) which are generally unifor-
mally distributed throughout the protein. The quantity
measured is the incoherent dynamic structure factor
Sic(q, w) which is the space-time Fourier transform of the
self-correlation function G,(r, t) which describes the cor-

relation of the position of an atom at time 0 with the
position of the same atom at time t.
We find that up to 180 K the dynamics of hydrated

myoglobin are consistent with harmonic behavior, that is,
the atomic mean-squared displacements increase linearly
with temperature and only vibrational motion is apparent
in the inelastic spectrum. There is a resolved maximum in
the dynamic structure factor at -25 cm-'. Above 180 K
we observe the onset of other dynamical processes which
manifest themselves (analogously to Mossbauer spectros-
copy) by the anomalous decrease in the Debye-Waller
factor above 180 K corresponding to a marked increase in
the mean-squared atomic displacements (8). This is
accompanied by the appearance of a broad quasielastic
line superimposed on the background vibrational motion
which ultimately submerges the maximum at 25 cm-'
observed at low temperatures to give at higher tempera-
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tures a spectrum monotonically decreasing with fre-
quency.

In this paper we focus on the vibrational part of the
spectrum of myoglobin. The vibrational frequency distri-
bution, G(w), of myoglobin is derived at temperatures
between 100 and 350 K using a modification of the usual
method of extrapolation of the incoherent scattering to
q = 0 which takes into account multiple scattering. At
low temperatures (below 200 K), where there is no
quasi-elastic scattering, G(w) is found to be Debye-like
(G [w] a w2) at very low frequencies followed by a
cross-over to a weaker dependence on frequency above 25
cm '. The observed peak in the dynamic structure factor
at 25 cm-' manifests itself as an enhancement in the
density of states. The results for higher temperatures
show that it is a good approximation to assume that the
vibrational motion remains essentially harmonic above
200 K. This allows the quasielastic spectrum to be sepa-
rated above 200 K and this has been further analyzed in a
previous paper (8).
The features in the density of states reported here are

reminiscent of those found in other amorphous systems
and glasses and are also predicted for systems with fractal
geometry. The results for myoglobin are therefore dis-
cussed in relation to various theories of low frequency
vibrations in amorphous systems and also to earlier
low-frequency Raman spectroscopy and electron spin-
relaxation results on proteins. Furthermore the neutron
scattering measurements reported here cover exactly the
same picosecond time domain that is currently accessible
to molecular dynamics simulations of proteins or other
models of protein dynamics such as normal mode analy-
sis. It is therefore important to try and compare these
experimental results with detailed theoretical calculations
to assess the reliability of the empirical potential energy
functions used in the latter. This has been done recently
with regard to the frequency distribution of bovine
pancreatic trypsin inhibitor (BPTI; 13, 14).

2. METHODS

Measurements were made on the time focusing time-of-flight spectrom-
eter IN6 at the Institut Laue-Langevin (ILL), Grenoble, France (15).
The spectrometer was operated with a wavelength of 5.1 A and the
detectors grouped to give 19 spectra at scattering angles between 130
and 1140 (corresponding to elastic q between 0.27 and 2.05 A -'). The
accessible energy range is 1-500 cm-'. The energy resolution function of
this instrument is closely Gaussian with sigma measured at the elastic
peak increasing from 0.24 cm-' at low angles to 0.48 cm-' at high
angles. The resolution deteriorates rapidly with increasing energy shift.
Spectra were accumulated for 3-8 h. Initial data reduction was per-
formed using standard ILL programs which correct for incident flux,
cell scattering, and self-shielding (using angle dependent slab correc-
tions (12) and measured transmissions) and detector response (using a

vanadium spectrum as a standard). The resultant spectra, put on an

absolute scale, are the basis of the discussion in this paper.
Samples for IN6 were measured in a thin walled, vacuum tight

aluminium cell of diam 50 mm and interwall spacing 1.5 mm with the
sample at 1350 to the incident beam. Hydrated samples of sperm whale
myoglobin were obtained by rehydration of lyophilized material (Sigma
Chemical Co., St. Louis, MO) with D20 (0.33 g D20/g protein) in a

controlled humidity environment (provided by D20 saturated with
potassium nitrate). Under these hydration conditions, the incoherent
scattering from the unexchanged 'H atoms of the protein (-CH,
-CH2, -CH3, and some very slowly exchanging -NH) contribute
more than 98% of the total sample incoherent scattering. Typically
300-500 mg of sample were used giving neutron transmissions of
92-86%. Temperature was easily variable between 100 and 350 K (with
stability 0.5 degrees) by means of a computer controlled heater/cold
nitrogen gas flow. The structure of the D20-hydrated sample of
myoglobin used for the inelastic measurements is currently being
characterized by neutron small-angle scattering using the instrument
D16 at the Institut Laue-Langevin.
The amplitude-weighted frequency distribution G(w) was obtained

from the time-of-flight spectra at different angles by a novel procedure
which takes into account multiple scattering (Cusack, S., unpublished
results). G(w) is defined for a spherically averaged system by the limit:

6we
G(W) = lim (e I/- 1)Sinc(q, w)

q-O hq2
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where the second term corresponds to the result for a harmonic system of
N atoms with normal modes of frequency wA and eigenvectors CL and
incoherent neutron cross-section ol. This is based on the dominance as

q- 0 of the one-phonon contribution to Siq, w):

Sinc(q, +ox)

= e±hw/kBT E L 22WL(q) q c2 (2)
L-, 47r 4wXmLLsinh (hwX/2kBT)

where WL (q) is the Debye-Waller exponent for atom L. It will now be
assumed that for powder samples of very complex polyatomic molecules
as studied here, anisotropic effects in Eq. 2 (e.g., due to the normal mode
eigenvectors) and the complications arising from the many inequivalent
atoms, can be ignored and the resultant spherically averaged incoherent
structure factor can be expressed in terms of an isotropic amplitude-
weighted frequency distribution G(cw) and frequency-dependent Debye-
Waller factor exponent q2U(w). (U[w] can be thought of as an average

mean-square displacement). The justification of this is empirical (see
below) and also discussed elsewhere with reference to a calculated
normal mode model of BPTI, a small protein (16). There it is shown that
the amplitude-weighted frequency distribution that would be measured
by incoherent neutron scattering has very closely the same form as the
true normal mode frequency distribution g(w). This is due to the good
sampling of the motion in different parts of the protein by the uniformly
distributed hydrogen atoms.

In practice the experimental data were found to conform very well to
the empirical equation:

hq2
S(q,w) _G(eq1(O M() (3

6w (ehwlkBT 1)
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where M(w) is a small but significant angle-independent (i.e., q-
independent) term (see dashed curve in Fig. 3 b). Subsequently it has
been shown that the term M(w) can be accounted for quantitatively
using the multiple scattering theory of Sears (17) (see also reference 12
for a discussion of multiple scattering). M(@) arises from double
scattering of the form elastic-inelastic and can be significant because of
the extremely intense elastic peak (and correspondingly weak inelastic
scattering) from the samples measured. As long as the elastic intensity
varies only slowly with q i.e., S(q, 0) - S(O), this double scattering can
be shown (Cusack, S., unpublished results) to be approximately given by
the expression M(w) - AS(q0, w) S(O), where A is a constant depending
on the sample cross-section (defined by Eq. [6.2.8] in reference 17), and
qo = qo(w) is the scattering vector for 900 scattering. Thus M(W) is
expected to be essentially angle-independent and of the same form as the
single inelastic scattering, as observed (dashed curve, Fig. 3 b). Good
quantitative agreement is found for its observed magnitude and that
predicted by the theory for the slab geometry and sample transmission
used in the experiment. (Cusack, S., unpublished results).
The ensemble of time-of-flight data can thus be reduced in principal

to three frequency-dependent functions G(w), U(w), and M(w) by least
squares fitting Eq. 3 to the 18 different q-values measured at each
frequency. In practice, the limited range of q of the data do not allow the
Debye-Waller factor to be independently defined as it is strongly
correlated with G(w) (i.e., the same value of S [q, wJ can be obtained by
increasing both G [w] and U[k]). This problem was overcome by using a
fixed (frequency independent) Debye-Waller factor, exp[q2UVib(T)], for
each temperature, with UVib(T) being determined from examination of
ratio plots as defined by Eq. 6 and shown in Fig. 2. The solid lines in Fig.
2 are the ratios (right hand side of Eq. 2) expected for a system showing
purely harmonic behavior and depend only on the Bose occupation
factors. Agreement between theory and the measured data is very good
above 30-40 cm-' for a particular choice of Debye-Waller factor,
namely with UVib(T) = 0.0001 x T(K) A2 (T > 100 K), where we have
assumed a linear temperature dependence as appropriate to a harmonic
system. This temperature dependence of the vibrational Debye-Waller
factor is very close to that derived from an independent analysis (8) of
the elastic peak intensity as a function of q and T; this analysis gave
UVib(T) = 0.00016 x (T - 50) A 2 (T > 100). Although this method of
determination of the Debye-Waller factor is rather sensitive, remaining
uncertainty in its value does lead to a corresponding uncertainty in the
magnitude of the derived G(w) at each temperature. For example,
UVib(T) at T = 250 K has been taken as 0.025 A2; if the value were
really as much as 0.04 A2 (an error bigger than estimated), for a typical
value of q = 2.5 A-', the Debye-Waller factor would be smaller by
exp[-2.52 x (0.04 - 0.025)] = 0.91. Thus, the derived G(w) would be
about 10% larger. However, the form of the density of states is much less
sensitive to the Debye-Waller factor as the frequency dependent effects
are only slowly varying. In particular the conclusions in section 4b and
4c are not affected.

In reference 16 there is a fuller discussion of attempts to simplify Eq.
2 while preserving the effects of inequivalent atoms (i.e., with different
Debye-Waller factors) and multiphonon scattering. However, the expres-
sions derived contain more parameters than in Eq. 3, and the apparent
information content of the current data does not justify their use.

3. RESULTS

Fig. 1 shows the incoherent structure factor of D20-
hydrated myoglobin for a fixed scattering angle (1080) for
temperatures between 100 and 350 K. These spectra are
simply a transformation of the original time-of-flight
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FIGURE 1 The temperature dependence of S(q, w) for D20-hydrated
myoglobin for a mean scattering angle of 108.30. The temperatures are
100 K (bottom curve), 180 K, 220 K, 270 K, 300 K, 320 K, and 350 K
(top curve). The data are on an absolute scale (with accuracy - O1%), as
determined by a vanadium standard.

spectra. The spectra at 100 and 180 K show no broaden-
ing of the elastic line and a well-resolved maximum at 25
cm-'. Above 180 K this maximum becomes less and less
distinct due to the increasing intensity of a broad quasielas-
tic line.
We first show that we can analyze these data by

separating contributions from elastic, quasielastic, and
inelastic scattering according to the expression ( 12).

S(q, w, T) = e-q'UVib(T)

* [A(q, T)6(wo) + Sqcl(q, o, T) + Svib(q, w, T)], (4)

where A (q, T) is the elastic incoherent structure factor,
the quasielastic scattering is given by Sqel(q, w, T) =

[1 - A(q, T)]S'qel(q, w, T), where S'q,l(q, w, T) is normal-
ized to unity over frequency and

w,T) ~hq2SVib(q, ,
hwlkBT G (5)

is the one-phonon vibrational scattering, with q2Uvib(T)
as the vibrational Debye-Waller factor exponent. Eq. 4 is
understood to be convoluted with the instrumental resolu-
tion function.

In Eqs. 4 and 5 we have assumed that the vibrational
frequency distribution G(w) is temperature independent
and that the temperature dependence of the vibrational
scattering occurs only in the Debye-Waller and Bose
factors as in a harmonic system. That this is a good
approximation can be seen from ratio plots as previously
used by Frick et al. in their study of the glass transition in
polybutadiene (18). Outside the frequency range of the
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quasielastic scattering we should find:

S(q, w, T) e q'Uvib(To)

S(q, w, TO) e q-Uvib(T)

(e 1) T hw I\
= wlkBT (I) + -(-- -)] (6)
(ehwk TO 2k~ \To T

where To is a reference temperature where the quasielas-
tic scattering is zero. Fig. 2 shows such ratios for To =
180 K. These demonstrate that the quasielastic scattering
falls to zero beyond -4 meV (32 cm-') and that above
this frequency the inelastic scattering is to a very good
approximation taken into acount by the quasiharmonic
temperature scaling. In evaluating Eq. 6 we have taken
UVib(T) = 0.0001 x T(K) A2; much less good agreement
is obtained with UVib(T) differing by more than 20%.
Indeed we have used these ratios as a rather sensitive
method of determining the Debye-Waller factor (see end
of section 2). In section 4d we show how the quasielastic
contribution can be obtained by subtracting the inelastic
part.
The data at each temperature have been used to derive

independently the frequency distribution G(w) according
to the method described above with a fixed Debye-Waller
factor for each temperature. As an example of the fitting
procedure, Fig. 3 a shows the unsmoothed spectra at
180 K for nine of the eighteen scattering angles between
170 and 1 120 and Fig. 3 b shows the same data (dots) with
superimposed solid curves recalculated using the two
fitted functions G(w), M(w), and U(w) = Uvib according
to Eq. 3. Also shown is the angle-independent function
M(w) which arises from multiple scattering. The good
quality of the fits demonstrates that the data are well
explained by Eq. 3. Fig. 4 shows the frequency distribu-
tion G(w) at 100 K, 180 K, 250 K, 300K, and 350K
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FIGURE 3 (a) S(q, w) for D20-hydrated myoglobin at 180 K for a
series of scattering angles: 16.8 (bottom curve), 25.9, 35.4, 50.6, 61.2,
71.8, 84.6, 97.3, 111.60 (top curve). (b). The same data (dots) as in a
plotted with curves recalculated from the fitted functions G(W), M(W),
and UVib (solid lines). The angle-independent multiple scattering
contribution M(w) is shown dashed.
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FIGURE 4 The amplitude-weighted vibrational frequency distribution
G(w) of D20-hydrated myoglobin derived independently at 100 K
(small circles) and 180 K (solid), 250 K (dots), 300 K (dash), and 350
K (dotdash). The 100 K curve has been scaled by a constant factor 1.04
to bring it into near superposition with the 180 K curve. This difference
could be accounted for by errors in transmission measurements. The
statistical errors calculated from the fitting routine at each energy are
between 2 and 4% for all curves.
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FIGURE 5 Log/log plot of the amplitude-weighted vibrational fre-
quency distribution of myoglobin at 180 K (solid), 250 K (dots), 300 K
(dash), and 350 K (dotdash). The dashed straight line has slope 2
(Debye behavior).

(note that the quasielastic scattering has not been sub-
tracted out) and Fig. 5 shows the same data on a Log/Log
plot.

4. DISCUSSION

4a. The dynamic structure factor
The most striking feature of the dynamic structure factor
of myoglobin is the peak centered at 25 cm-' observed at
low temperatures (Fig. 1). Because in S(q, w) modes are
weighted by their amplitudes (see Eq. 2), the occurrence
of the peak tells us that the dominant mean square
vibrational displacements occur in myoglobin with a
frequency of -25 cm-'. Similar low frequency peaks have
been identified in several proteins by Raman spectroscopy
at room temperature (19-2 1). Brown et al. found that the
Raman peak at 29 cm-' in chymotrypsin disappears upon
SDS denaturation showing its sensitivity to protein second-
ary or tertiary structure and Genzel et al. found that the
Raman peak at 25 cm-' in crystalline lysozyme disap-
pears upon dissolving the crystals. Chou has proposed that
these modes correspond to accordion-like modes of a-
helices and has made specific predictions for their frequen-
cies (generally in the range 20-30 cm-') in a variety of
proteins (22, 23). He has applied similar arguments to the
breathing modes of 3-sheets and barrels (24). To test this
hypothesis we have made measurements of the dynamic
structure factor of both acid and heat denatured myoglo-
bin (results not shown). We find that the 25 cm-' peak
persists but with a slightly different shape. This suggests
that the peak is not linked to internal deformations of
secondary structure elements (in the case of myoglobin,
a-helices), but to modes involving cross-chain interactions
e.g., relative motions of a-helices. The interactions respon-
sible for these modes will persist in a denatured molecule
and hence would explain why the spectrum is only slightly
modified.

4b. The vibrational frequency
distribution of myoglobin
The frequency distributions derived at 100 and 180 K
(see Fig. 4), where there is no quasielastic scattering, are

very nearly superimposable below -100 cm-'. In other
words, the variation with temperature of the inelastic
scattering from myoglobin up to 180 K is consistent with
that expected from a harmonic system and implies that
the low frequency dynamics of myoglobin can be de-
scribed by means of a distribution of underdamped
vibrational modes. This is also consistent with the ob-
served linear dependence on temperature (below - 180 K)
of the atomic mean-square displacements both by neu-

trons (8) and by Mossbauer spectroscopy (1), again as

expected for a quasi-harmonic system. In fact, Fig. 4
shows that the frequency distribution changes little in
form right up to 350 K; the increasing enhancement at
low frequencies above 180 K is due to the quasielastic
scattering which has not been subtracted out. Systematic
differences occur above 100 cm-, although it is possible
that these are due to the neglect of multiphonon effects
which enhance the scattering at high temperature and
high q (i.e., at high angle and high w in a time-of-flight
measurement). Also it may be that the effective Debye-
Waller factor is not the same at higher frequencies where
the modes are more localized and the different Debye-
Waller factors of different atoms become important.

Fig. 5 shows the myoglobin frequency distribution
replotted on a log/log scale. This shows that at very low
frequencies (below 20 cm-l) the distribution is Debye-
like, i.e., G(U) oc2 as expected of a quasiharmonic
continuum. However, there is a significant enhancement
above the Debye form centered at 25 cm-' (correspond-
ing to the marked low frequency peak in the structure
factor shown in Fig. 1), whereas above 40 cm-' there is a

deficit of modes. It should be stressed that although the
enhancement in numbers of modes at 25 cm 'is not very

striking, the real physical significance of modes of this
frequency is evident from the corresponding peak in
Sin(q, w) as mentioned above in section 4a.
We now discuss the origin of the form of the vibrational

density of states of myoglobin, firstly from the point of
view of general theories of amorphous systems and
secondly in comparison with detailed atomic models of
protein dynamics which use empirical potential energy

functions. In this respect we point out that other globular
proteins that we have measured (lysozyme, BPTI, con-

canavalin A) all show spectral features similar to those of
myoglobin suggesting that general features of protein
structure (e.g., packing density, intramolecular force
constants) should be sufficient to explain the form of the
density of states.
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The frequency distribution of amorphous diglycidyl
ether of bisphenol A (DGEBA, the monomer from which
most epoxy resins are made) (25) shows a cross-over from
Debye behavior, g(w) a w2, to a much weaker frequency
dependence at a frequency corresponding to a length scale
of - 30 A. In the crystalline material the Debye behavior
is maintained over a much larger frequency range. Simi-
lar anomalies are found in glassy systems (26). Alexander
and Orbach (27, 28) have proposed that these results can
be explained by a change in geometry from Euclidean at a

large length scale (r >> ) to a fractal geometry at short
length scales (a < r < ¢), where a is the atomic spacing.
One can associate the characteristic length r with a

cross-over frequency wu. The high frequency vibrations
have been termed fractions (27). Thus, fraction frequen-
cies are >wC and phonon frequencies are < wc. It was
shown (29) that the density of states should follow g(w) a

wd-I in the fractal regime. d is the spectral dimension of
the fractal structure. For the cross-over region a scaling
analysis (29) suggests an enhancement of g(w) above the
Debye behavior in the vincinity of wc.

Fig. 5 shows that the frequency distribution of myoglo-
bin (i.e., that derived at 180 K or below) has approxi-
mately the form predicted for fractal systems with oc _ 25
cm-'. Assuming a sound velocity of 3,000 in/s (30, 31)
this frequency corresponds to a length scale of 40 A,
approximately the size of the myoglobin molecule. Thus,
there is about one decade available for the evolution of the
lower dimensional power law (a - 4 A - 40 A).
Although there is evidence from electron-spin relaxation
that proteins do exhibit fractal-like spectral properties
(32) (see below) there is no structural basis for self-
similarity in proteins. However, these features in the
frequency distribution may arise from other causes (33).
An effective-medium approximation which emphasizes
the low cross-chain hydrogen-bond connectivity in alpha-
helical proteins has been used to show that in, for
instance, myoglobin, the frequency distribution should
vary as w0.6 (d= 1.6) at low frequencies (34). In a

different application of the effective medium approxima-
tion aimed at a description of phonons in glasses, it has
recently been shown that characterizing the amorphous
(disordered) nature of the system by a distribution of
coupling constants can lead to an anomaly in g(Q)
corresponding to a cross-over from low frequency free
wave propagation to a high frequency strongly damped
regime (35), without invoking fractal topology. It seems

likely that generalizations of these latter theories of
amorphous materials will eventually lead to a quantitative
explanation of the density of states of myoglobin and
other globular proteins.
An alternative approach to low frequency modes in

proteins is based on computer simulation of protein
dynamics using empirical force-fields and detailed struc-

tural models derived by x-ray crystallography (36). Mo-
lecular dynamics simulations give trajectories of each
atom for periods up to 100's of picoseconds (nowadays
usually in the presence of solvent molecules), whereas
normal mode analysis makes the harmonic approximation
assuming that it will be valid for small amplitude vibra-
tions about a well-defined minimum energy configuration.
Because these models include in principle all the effects
specific to proteins mentioned above, they should be
capable of reproducing observed spectra. However it
remains open to question whether the potential energy

functions are sufficiently accurate, whether the harmonic
model is ever applicable, and whether from a molecular
dynamics simulation of a single protein, it is possible to
derive accurate ensemble average properties. In a recent
comparison of the observed frequency distribution at 290
K of BPTI with various normal mode analyses of the
protein (9, 10, 13, 14), it was noted that, even after
allowing for the instrumental resolution function, the
observed spectrum is always smoother than the calculated
spectra, which predicted considerable structure in the
density of vibrational modes (arising not from single
modes, but a clustering of modes). The most likely
explanation of this is damping effects due to anharmonic-
ity and friction. In this paper we have shown that the
density of states of myoglobin (and indeed BPTI) remains
smooth down to low temperatures and behaves as ex-

pected for a quasiharmonic system. Unfortunately there
is no published normal mode analysis of myoglobin yet.
However, in view of the concept of conformational sub-
states in proteins mentioned in the Introduction, it seems
plausible that even at low temperatures there is no one

well-defined structure about which vibrations occur and
this will inevitably lead to a smooth spectrum. Some
evidence for this comes from preliminary analysis of
molecular dynamics simulations of myoglobin performed
at 300 and 80 K ( 14). Incoherent inelastic neutron spectra
calculated directly from these simulations show remark-
able qualitative similarity with the differences observed
experimentally as a function of temperature, i.e., a

resolved inelastic peak in Sin,(q, w) in the range 18-25
cm-' is found from the 80 K simulation, whereas at
300 K the calculated spectrum is broad and monotoni-
cally decreasing. Furthermore, three separate simulations
at 80 K, which appear to sample different regions of
conformational space, give slightly different positions for
the resolved inelastic peak, the average result being closer
to the observed spectrum.

In summary, simplified theories of vibrations in amor-

phous systems may be sufficient to explain the form of the
density of states measured in globular proteins. Such
models may also remove the problem of separation of
inter- and intramolecular modes in, for instance, a protein
powder or crystal. However, detailed calculations using
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empirical potential functions, particularly at a number of
temperatures, may yield more insight in to the specific
dynamics of proteins.

4c. Electron-spin relaxation
The electron-spin relaxation rate (1/T,) due to two-
phonon (Raman) processes is given by (32):

1 px w4[g(M)12exp (hw/kBT)
T, J° [exp(hw/kBT)

where g(w) is the vibrational density of states. For a

system of dimension d, g(w) is proportional to sod-SO that
/ T, varies as T5+Id (i.e., a normal Debye solid with

g(w) o 2 gives / T, varying as T9). It has been found
(32, 37) that for ferric iron containing heme and nonheme
proteins the temperature dependence of the Raman rate
measured on frozen solutions between 4 and 20 K varies
between T57 (ferrodoxin) and T6-3 (myoglobin). These
anomalously low exponents appear to imply effective
dimensionalities for protein vibrations in the range 1.35-
1.65, respectively. An attempt has been made to relate
these observations to a fractal description of protein
structure (37), although the significance of the derived
correlation is unclear. As mentioned above, an alternative
explanation based on an effective medium treatment of
the anisotropy of force constants in proteins has been
proposed (34).

Having measured the (amplitude-weighted) vibra-
tional density of states of a hydrated myoglobin powder
by inelastic neutron scattering we can immediately use

Eq. 7 to calculate the corresponding Raman relaxation
rate and the result is plotted on a log/log scale in Fig. 6.
This shows that below -5 K, a Debye-like T9 behavior is
expected but that above this temperature there is a

cross-over to a lower power law. The reason for this
cross-over is evident from the form of the density of states
plotted in Fig. 4. We do not think it useful to quote a value
for the apparent fractal dimensionality of myoglobin
derived from this data, firstly because there appears not to
be a single power law and secondly because we have
measured the density of states directly and do not need to
deduce its form from an integrated property. However, it
is clear that the form of the Raman relaxation rate for
myoglobin predicted by the neutron results disagrees with
the striking T6-3 (and absence of T9) behavior observed by
electron-spin relaxation (32). This may be due to the
difference in the nature of the samples (hydrated powder
for neutrons, frozen solutions for ESR); differences in the
density of states between 4-20 K (ESR) and 100-180 K
(neutrons); or incorrect weighting by the neutrons of the
phonons responsible for the Raman relaxation. On the
other hand, Fig. 6 shows more similarity with the ESR
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FIGURE 6 Log/log plot of the Raman relaxation rate 1/ T, (arbitary
scale) calculated from the amplitude-weighted vibrational frequency
distribution of myoglobin at 180 K (circles). The dashed straight line
has slope 9 (Debye behavior).

result for myoglobin azide in a solvent of 50% glycerol/
water (37). Here a transition from T9 to 7T622 behavior is
observed near 6 K. This is attributed to a cross-over from
solvent (Debye) to protein (fractal) vibrational modes
when the phonon wavelength becomes smaller than the
size of the protein molecule. Whether or not this is the
correct explanation, it does raise the difficulty of distin-
guishing between inter- and intramolecular modes in
concentrated or frozen protein systems.

4d. Separation of quasielastic and
inelastic scattering
We can use the results of section 3 to obtain the form of
the quasielastic scattering for temperatures above 180 K.
From Eqs. 4 and 6 we find:

Sqe(q, O, T) = S(q, c, T)

e-q2UVib(T)(ehw/kBTo -_1

- S(q, w, To) e-qUv;ib(TO)(eh1/kBT (8)

The results are shown in Fig. 7. The integrated quasielas-
tic intensity increases with temperature with dependence
exp(-AE/RT), where AE = 13 ± 1 kJ/mol. In a

previous paper (8), a more detailed interpretation of the
elastic and quasielastic scattering is presented in terms of
a model of hydrogen motion between sites of energy

asymmetry AE. There it is shown that this additional
motion excited above 180 K leads to a sharp extra
increase in the mean-square atomic displacements. Fou-
rier transform of the curves in Fig. 7 with simultaneous
deconvolution of the instrumental resolution function
shows that the corresponding time-correlation function
have a fast component (r - 0.3 ps) and a slower compo-

nent (r - several ps)(8).
The crucial assumption in this analysis is that the

vibrational mode frequencies are temperature indepen-
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FIGURE 7 Quasielastic spectra for temperatures above 180 K obtained
by subtraction of the scaled inelastic scattering at 180 K for a fixed
scattering angle of 108.30. The temperatures are 220 K (bottom curve),
250 K, 270 K, 300 K, 320 K, and 350 K (top curve).

dent. This appears to be the case above 4 meV (Fig. 2),
but it cannot be ruled out that some of what we call
quasielastic scattering arises from low frequency mode
softening due to frictional or other anharmonic effects.
However, it is striking that the form of the quasielastic
scattering (Fig. 7) is virtually temperature independent
(the amplitude varying with dependence exp [-AE/R T],
see above). This is more easily understood in terms of a
well-defined dynamic process (8), rather than mode
softening which would be expected to lead to a spectral
form changing more smoothly with temperature.

5. CONCLUSION

Inelastic neutron scattering data on a D20-hydrated
powder of myoglobin as a function of temperature have
been used to show that below 180 K myoglobin behaves as
a quasiharmonic material characterized by an almost
temperature independent vibrational frequency distribu-
tion. The latter is a smooth function similar in form to a
variety of other amorphous and glassy systems. Above
180 K there is an onset of quasielastic scattering which
can be separated from the vibrational motion and has
been analyzed more fully elsehwere (8; 38; Doster, W., S.
Cusack, and W. Petry, manuscript submitted for publica-
tion). The results presented here are not unique to
myoglobin; qualitatively similar behavior is found for
hydrated powders of lysozyme and BPTI, although the
position of the peak in the structure factor varies slightly
(unpublished results). This suggests that the dynamical
behavior of globular proteins at the level of detail ob-
served here is not very sensitive to secondary structure.
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